Description

Decode Ways

A message containing letters from A-Z is being encoded to numbers using the following mapping:

'A' -> 1
'B' -> 2
...
'Z' -> 26

Given a non-empty string containing only digits, determine the total number of ways to decode it.

Example 1:

Input: "12"
Output: 2
Explanation: It could be decoded as "AB" (1 2) or "L" (12).

Example 2:

Input: "226"
Output: 3
Explanation: It could be decoded as "BZ" (2 26), "VF" (22 6), or "BBF" (2 2 6).

Read More

Description

Scramble String

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great
   /    \
  gr    eat
 / \    /  \
g   r  e   at
           / \
          a   t

To scramble the string, we may choose any non-leaf node and swap its two children.

Read More

Description

Minimum Window Substring

Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).

Example:

Input: S = "ADOBECODEBANC", T = "ABC"
Output: "BANC"

Note:

  • If there is no such window in S that covers all characters in T, return the empty string “”.
  • If there is such window, you are guaranteed that there will always be only one unique minimum window in S.

给出两个字符串ST,在S中找到一个最短的子串,它包含T中所有的字符。

Read More

Description

Edit Distance

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

Read More

Description

Text Justification

Given an array of words and a width maxWidth, format the text such that each line has exactly maxWidth characters and is fully (left and right) justified.

You should pack your words in a greedy approach; that is, pack as many words as you can in each line. Pad extra spaces ' ' when necessary so that each line has exactly maxWidth characters.

Extra spaces between words should be distributed as evenly as possible. If the number of spaces on a line do not divide evenly between words, the empty slots on the left will be assigned more spaces than the slots on the right.

For the last line of text, it should be left justified and no extra space is inserted between words.

Note:

  • A word is defined as a character sequence consisting of non-space characters only.
  • Each word’s length is guaranteed to be greater than 0 and not exceed maxWidth.
  • The input array words contains at least one word.

Read More

Plus One

Description

Plus One

给定一个用数组表示的十进制数,将数字加一。

Example 1:

Input: [1,2,3]
Output: [1,2,4]
Explanation: The array represents the integer 123.

Example 2:

Input: [4,3,2,1]
Output: [4,3,2,2]
Explanation: The array represents the integer 4321.

Read More

Description

Length of Last Word

Given a string s consists of upper/lower-case alphabets and empty space characters ‘ ‘, return the length of last word in the string.

If the last word does not exist, return 0.

Note: A word is defined as a character sequence consists of non-space characters only.

Example:

Input: "Hello World"
Output: 5

求给出的字符串中最后一个单词的长度。

Read More

Multiply Strings

Description

Given two non-negative integers num1 and num2 represented as strings, return the product of num1 and num2, also represented as a string.

Example 1:

Input: num1 = “2”, num2 = “3” Output: “6”

Example 2:

Input: num1 = “123”, num2 = “456” Output: “56088”

将两个字符串表示的数字相乘(大数相乘)。

Read More

Author's picture

SelFree

城市永远年轻,而我们终将老去

Programer

ChengDu·China